--- title: "Introduction to mbsts" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to mbsts} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(mbsts) ``` This is the introduction to the mbsts package. You can use the sim_data function to generate a simulated dataset like this: ```{r} ###############Setup########### n<-505 #n: sample size m<-2 #m: dimension of target series cov<-matrix(c(1.1,0.7,0.7,0.9), nrow=2, ncol=2) #covariance matrix of target series ###############Regression component########### #coefficients for predictors beta<-t(matrix(c(2,-1.5,0,4,2.5,0,0,2.5,1.5,-1,-2,0,0,-3,3.5,0.5),nrow=2,ncol=8)) set.seed(100) #predictors X1<-rnorm(n,5,5^2) X4<-rnorm(n,-2,5) X5<-rnorm(n,-5,5^2) X8<-rnorm(n,0,100) X2<-rpois(n, 10) X6<-rpois(n, 15) X7<-rpois(n, 20) X3<-rpois(n, 5) X<-cbind(X1,X2,X3,X4,X5,X6,X7,X8) ###############Simulated data################ set.seed(100) data=sim_data(X=X, beta=beta, cov, k=c(8,8), mu=c(1,1), rho=c(0.6,0.8), Dtilde=c(-1,3), Season=c(100,0), vrho=c(0,0.99),lambda=c(0,pi/100)) ```